Strigolactone Can Promote or Inhibit Shoot Branching by Triggering Rapid Depletion of the Auxin Efflux Protein PIN1 from the Plasma Membrane

نویسندگان

  • Naoki Shinohara
  • Catherine Taylor
  • Ottoline Leyser
چکیده

Plants continuously extend their root and shoot systems through the action of meristems at their growing tips. By regulating which meristems are active, plants adjust their body plans to suit local environmental conditions. The transport network of the phytohormone auxin has been proposed to mediate this systemic growth coordination, due to its self-organising, environmentally sensitive properties. In particular, a positive feedback mechanism termed auxin transport canalization, which establishes auxin flow from active shoot meristems (auxin sources) to the roots (auxin sinks), has been proposed to mediate competition between shoot meristems and to balance shoot and root growth. Here we provide strong support for this hypothesis by demonstrating that a second hormone, strigolactone, regulates growth redistribution in the shoot by rapidly modulating auxin transport. A computational model in which strigolactone action is represented as an increase in the rate of removal of the auxin export protein, PIN1, from the plasma membrane can reproduce both the auxin transport and shoot branching phenotypes observed in various mutant combinations and strigolactone treatments, including the counterintuitive ability of strigolactones either to promote or inhibit shoot branching, depending on the auxin transport status of the plant. Consistent with this predicted mode of action, strigolactone signalling was found to trigger PIN1 depletion from the plasma membrane of xylem parenchyma cells in the stem. This effect could be detected within 10 minutes of strigolactone treatment and was independent of protein synthesis but dependent on clathrin-mediated membrane trafficking. Together these results support the hypothesis that growth across the plant shoot system is balanced by competition between shoot apices for a common auxin transport path to the root and that strigolactones regulate shoot branching by modulating this competition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming a Stem into a Bush

Without careful pruning, a rose bush would grow into a single stem with leaves. This is why gardeners invest in a good pair of clippers—cutting the leading shoot helps activate axillary buds which typically form at the base of each leaf near the stem and give rise to new shoots. Yet, axillary buds sometimes remain dormant despite pruning, and many plant species activate branching without a snip...

متن کامل

Effect of Strigolactone on Polar Auxin Transport and Plant Architecture

Physiologically, branching is regulated by a complex interplay of hormones including auxin, cytokinin and recently discovered strigolactone. The study is focused on the effect of strigolactone on shoot branching of pea (Pisum sativum L.) in relation with polar auxin transport, which has an essential role in apical dominance. After decapitation of the dominant apex lateral buds are released from...

متن کامل

Strigolactone regulates shoot development through a core signalling pathway

Strigolactones are a recently identified class of hormone that regulate multiple aspects of plant development. The DWARF14 (D14) α/β fold protein has been identified as a strigolactone receptor, which can act through the SCFMAX2 ubiquitin ligase, but the universality of this mechanism is not clear. Multiple proteins have been suggested as targets for strigolactone signalling, including both dir...

متن کامل

Cellular events of strigolactone signalling and their crosstalk with auxin in roots.

Strigolactones are a new group of plant hormones that suppress shoot branching. In roots, they regulate primary-root growth and lateral-root formation and increase root-hair elongation. Reception of strigolactones occurs via a specific cellular system which includes a D14-like/MAX2-like/SCF complex that, upon perception of strigolactone signalling, leads to certain degradation of receptors and ...

متن کامل

Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth.

The directional distribution of the phytohormone auxin is essential for plant development. Directional auxin transport is mediated by the polarly distributed PIN-FORMED (PIN) auxin efflux carriers. We have previously shown that efficient PIN1-mediated auxin efflux requires activation through phosphorylation at the four serines S1-S4 in Arabidopsis thaliana The Brefeldin A (BFA)-sensitive D6 PRO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013